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sociated with higher positive clinical outcome including 
survival of patients intubated and in those requiring me-
chanical ventilation.

Mechanistically, Campos-Codo and coworkers [1] 
noted that glycolysis was a result of the increased 
generation of mitochondrial reactive oxygen species 
(mtROS) in the virus-infected cells. In turn, the ampli-
fied mtROS stabilized HIF-1α, a potent stimulator of 
pyruvate dehydrogenase kinase (PDK) which inhibits 
pyruvate dehydrogenase (PDH) thereby preventing the 
glucose metabolite, pyruvate, from being metabolized 
to acetyl-coenzyme A in the mitochondria. This causes 
metabolic reprogramming by shifting pyruvate metabo-
lism to the cytosol, decreasing OXPHOS and augmenting 
mtROS. Monocytes/macrophages functioning with this 
metabolic phenotype produce more cytokines leading 
to T cell destruction and killing of the alveolar lining 
cells, thereby severely aggravating the COVID-19 infec-
tion. Campos-Codo, et al. [1] concluded that “targeting 
HIF-1α may have great therapeutic potential for the de-
velopment of novel drugs to treat COVID-19”.

Many reports suggested the use of melatonin to 
treat COVID-19 disease, [3-6] and in the studies where it 
has been tested for this purpose, melatonin has proven 
highly effective [7]. The rationale for melatonin use as a 
treatment for COVID-19 stems from is ability to inhibit 
other viral infections [8]. Also, melatonin is likely to con-
vert highly pro-inflammatory glycolytic M1 macrophages 
to anti-inflammatory M2 macrophages which utilize OX-
PHOS [9]. Melatonin reprograms cytosolic glycolysis to 
mitochondrial OXPHOS because it down-regulates HIF-

Two highly relevant studies related to SARS-CoV-2 
and coronavirus disease (COVID-19) and supporting 
the use of melatonin to prevent and treat this serious 
infection were published recently. Campos-Codo and 
colleagues [1] documented experimentally their claim 
that drugs which specifically target hypoxia inducible 
factor-1α (HIF-1α) would likely have great therapeutic 
value in treating COVID-19. The second report is a retro-
spective analysis based on the clinical experience at the 
Columbia University Irving Medical Center with the use 
of drugs to treat respiratory distress in COVID-19-infect-
ed patients who required endotracheal intubation [2].

Hyperinflammatory monocytes/macrophages ac-
cumulate in abundance in the lower respiratory tract 
where they play a key role in determining the severity 
of SARS-CoV-2 infections. Campos-Codo, et al. [1] found 
that monocytes/macrophages infected with the SARS-
CoV-2 virus reprogram their metabolism from the con-
ventional mitochondrial oxidative phosphorylation (OX-
PHOS) to the (usually) pathological cytosolic glycolysis. 
This so-called Warburg-type metabolism is aided by the 
inadequately controlled elevated blood glucose levels 
of diabetic patients, which enhances cellular glycolysis, 
viral replication and hastens development of a severe 
respiratory infection resulting from the elevated cyto-
kine release (“cytokine storm”). Thus, diabetes is a risk 
factor for the progression and prognosis of COVID-19. 
In the more recent report, after a comprehensive eval-
uation of 791 patients diagnosed with COVID-19 who 
required tracheal intubation, Ramlall, et al. [2] found 
melatonin to be the only drug that was statistically as-
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Figure 1: Metabolic events involved in hyperglycemia-mediated exaggeration of the cytokine storm in SARS-CoV-2 infected pro-
inflammatory macrophages. Melatonin’s ability to reduce the molecular processes associated with the cytokine storm is identified 
and includes: 1) Inhibition of HIF-1α; 2) Scavenging of ROS; 3) Reducing glycolytic enzymes; 4) Preventing aerobic glycolysis; 5) 
Inhibiting viral replication; 6) Limiting the pro-inflammatory cytokine storm; 7) Reducing tissue damage. Each of these actions has 
been documented in experimental studies and are likely occur in SARS-CoV-2 infected individuals, whether or not they also suffer 
from diabetes. The associated references are cited in the text.
ACE2: Angiotensin converting enzyme 2; GLUT: Glucose transporter; ROS: Reactive oxygen species.

turnal melatonin titers are highest in children and wane 
throughout life such that the molecule is significantly de-
pressed in the elderly, [18] the age at which COVID-19 
infections are worse [19]. There are also individuals who 
suffer from genetically-determined hypomelatoninemia 
even at an early age; these individuals may also be at 
increased risk of a serious COVID-19 infection.

Melatonin is a commonly-used sleep aid. In critical-
ly-ill patients, melatonin improves sleep and wellbeing 
[20] both of which would also be beneficial to SARS-
CoV-2 infected patients. Melatonin has an uncom-
monly-high safety profile, [21] is inexpensive, is stable 
without refrigeration and would be particularly useful 
in underdeveloped countries lacking easily accessible or 
high-quality health care. Because of melatonin’s met-
abolic reprogramming actions, etc., it is a worthy can-
didate for further testing and consideration as a treat-
ment of COVID-19, especially since Ramlall, et al. [2] 
reported the elevated ability of melatonin as an effica-
cious treatment in intubated and mechanically-ventilat-
ed COVID-19 patients. Moreover, Castillo, et al. [7] have 
shown that the outcome of COVID-19 infected patients 
is improved as a result of melatonin treatment.

1α, which leads to PDH disinhibition, [10,11] causing 
the mitochondrial metabolism of pyruvate, stimulation 
of the tricarboxylic acid cycle, improved OXPHOS and 
reduced mtROS. In addition to reducing mtROS gener-
ation under these conditions, melatonin and its metab-
olites are highly effective direct scavengers of partially 
reduced derivatives of oxygen [12]. Melatonin works 
via the precise mechanism proposed by Campos Codo, 
et al. [1] for drug targeting of COVID-19. Moreover, be-
yond its action as an immunomodulatory agent, there 
is evidence that melatonin can act to reduce the viral 
load by inhibiting the epidermal growth factor receptor 
signaling, a requirement for virus replication [13]. The 
multiple actions of melatonin in inhibiting the progress 
of a SARS-CoV-2 infection are summarized in the (Fig-
ure 1). Considering the large amount of experimental/
clinical data related to the high efficacy of melatonin in 
inhibiting viral infections including SARS-CoV-2, [14-17] 
we strongly urge the use of melatonin for the preven-
tion and treatment of COVID-19 infection.

The risk of individuals developing an overt or lethal 
COVID-19 infection is also consistent with what is known 
about endogenous melatonin levels throughout life. Noc-
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